Гравитационная постоянная в системе си. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Гравитационная постоянная – величина не постоянная

Гравитационная постоянная в системе си. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Постоянство – это свойство временного (чукотская мудрость)

(Gravitational constant – size not a constant)

Часть 1

Рис.1

В физике имеется только одна константа, связанная с гравитацией – это гравитационная постоянная (G). Эта постоянная получена экспериментально и не имеет связи с другими постоянными. В физике она считается фундаментальной.

Данной константе будет посвящено несколько статей, где я постараюсь показать несостоятельность ее постоянства и отсутствие фундамента под ней. Точнее сказать фундамент под ней есть, но несколько иной.

Каково значение постоянной гравитации и почему ее так тщательно измеряют? Чтобы разобраться, необходимо снова вернуться к закону всемирного тяготения.

Почему физики приняли этот закон, мало того, они стали называть его «величайшим обобщением, достигнутым человеческим разумом» [1].

Его формулировка проста: два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

(1)

G – гравитационная постоянная

Из этой простой формулы следует множество весьма нетривиальных выводов, но нет ответа на основополагающие вопросы: каким образом и за счет чего действует сила тяготения?

Этот закон ничего не говорит о механизме возникновения силы притяжения, тем не менее, им пользуются до сих пор и будут, очевидно, пользоваться еще не одно столетие.

Одни ученые его охаивают, другие боготворят. И те и другие без него не обходятся, т.к. лучше ничего не придумали и не открыли. Практики, при освоении Космоса, зная несовершенство данного закона, используют поправочные таблицы, которые пополняются новыми данными после каждого запуска космических аппаратов.

Теоретики пытаются исправить данный закон путем ввода поправок, дополнительных коэффициентов, ищут доказательство факта существования ошибки в размерности гравитационной константы G, но ничего не приживается, а формула Ньютона остается в первоначальном виде.

Учитывая то многообразие неоднозначностей, неточностей при расчетах по данной формуле, ее все же нужно исправлять.

Широко известно выражение Ньютона: «Gravity is Universal», т. е. тяготение всемирно. Данный закон описывает гравитационное взаимодействие между двумя телами, где бы они не находились во Вселенной; в этом считается суть его универсализма. Гравитационная постоянная G, входящая в уравнение, рассматривается как универсальная константа природы.

Константа G позволяет проводить удовлетворительные расчеты в земных условиях, по логике, она и должна отвечать за энергетическое взаимодействие, но что взять с константы.

Интересно мнение ученого (Костюшко В.Е), который ставил реальные опыты для понимания и раскрытия законов природы, фраза: «У природы нет ни физических законов, ни физических констант с придуманными человеком размерностями».

«В случае с гравитационной константой в науке утвердилось мнение, что эта величина найдена и численно оценена.

Однако до сих пор не установлен ее конкретный физический смысл и это, прежде всего, потому, что на самом деле, в результате некорректных действий, а точнее грубейших ошибок, была получена ничего не значащая и совершенно бессмысленная величина с абсурдной размерностью» [2].

Я бы не хотел ставить себя в позу такой категоричности, но нужно, наконец, понять смысл этой постоянной.

В настоящее время значение гравитационной постоянной утверждено комитетом по фундаментальным физическим константам: G=6,67408·10-11м³/(кг·с²) [КОДАТА 2014] [3]. Несмотря на то, что данную константу тщательно измеряют, она не удовлетворяет требованиям науки. Все дело в том, что нет точной стыковки результатов между аналогичными измерениями, проводимыми в разных лабораториях мира.

Как отмечают Мельников и Пронин: «Исторически гравитация стала первой предметом научных исследований. Хотя прошло уже более 300 лет с момента появления закона тяготения, которым мы обязаны Ньютону, константа гравитационного взаимодействия остается наименее точно измеренной, по сравнению с остальными» [4].

Кроме того, остается открытым главный вопрос о самой природе гравитации и ее сущности. Как известно, сам закон всемирного тяготения Ньютона, проверен гораздо с большей точностью, чем точность константы G. Основное ограничение на точное определение гравитационных сил накладывает гравитационная  константа, отсюда к ней такое пристальное внимание.

Одно дело уделять внимание, и совсем другое – точность совпадения результатов при измерении G. В двух самых точных измерениях ошибка может достигать порядка 1/10000. Но когда измерения проводились в разных точках планеты, то значения могли превышать экспериментальную ошибку на порядок и более!

Что же это за постоянная, когда такой огромный разброс показаний при ее измерениях? А может это совсем не постоянная, а измерение каких-то отвлеченных параметров. Или на измерения накладываются помехи, неизвестные исследователям? Вот здесь появляется новая почва для различных гипотез.

Одни ученые ссылаются на магнитное поле Земли: «Взаимовлияние гравитационного и магнитного полей Земли приводит к тому, что земное тяготение будет сильнее в тех местах, где сильнее магнитное поле» [5].

Последователи Дирака утверждают, что гравитационная постоянная изменяется с течением времени и т.д.

Одни вопросы снимают из-за недоказанности, а другие появляются и это закономерный процесс. Но такое безобразие не может продолжаться бесконечно, надеюсь, мое исследование поможет установить направление к истине.

Первым, кому приписывают первенство эксперимента в измерении постоянной гравитации, был английский химик Генри Кавендиш, который в 1798 году задался целью определить плотность Земли.

Для такого тонкого эксперимента им были использованы крутильные весы, изобретенные Дж. Мичеллом (сейчас являются экспонатом в национальном музее Великобритании).

Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы в поле тяготения Земли.

Экспериментальные данные, как оказалось впоследствии, пригодились для определения G. Полученный Кавендишем результат – феноменальный, отличался всего на 1% от принятого сегодня. Надо отметить какое это было великое достижение в его эпоху.

За два с лишним века наука эксперимента продвинулась всего на 1%? Это невероятно, но факт.

Притом, если учесть флуктуации и невозможность их преодолеть, значение G присваивается искусственно, то получается, что мы вообще не продвинулись в точности измерений со времен Кавендиша!

Да! Никуда мы не продвинулись, наука находится в прострации – не понимая гравитации!

Почему наука за три с лишним столетия практически не продвинулось в точности измерения данной константы? Может все дело в инструменте, использованном Кавендишем. Крутильные весы – изобретение 16 века, остались на вооружении ученых и по сей день.

Конечно это уже не те крутильные весы, посмотрите на фотографию, рис. 1. Несмотря на навороты современной механики и электроники, плюс вакуум, стабилизация температуры, результат практически не сдвинулся с места. Очевидно, что-то здесь не так.

Наши предки и современники предпринимали различные попытки измерений G в разных географических широтах и в самых невероятных местах: глубоких шахтах, ледяных пещерах, скважинах, на телебашнях. Были усовершенствованы конструкции крутильных весов. Новые измерения, с целью уточнения гравитационной постоянной, повторялись и поверялись.

Ключевой эксперимент был поставлен в Лос-Аламосе в 1982-м году Г. Лютером (G. Luther) и У. Таулером (W. Towler). Их установка напоминала крутильные весы Кавендиша, с шарами из вольфрама. Результат этих измерений 6,6726(50)?10-11 m3kg-1 s-2 (т.е.

6,6726±0,0005), был положен в основу, рекомендованных комитетом данных для науки и техники (CODATA) значений в 1986-м году [6].

Всё было спокойно до 1995 года, когда группа физиков в немецкой лаборатории PTB в Брауншвейге, используя модифицированную установку (весы плавали на поверхности ртути, с шарами большой массы), получили значение G на (0.6±0,008)% больше общепринятых [7]. В результате в 1998 году погрешность измерения G была увеличена почти на порядок.

В настоящее время активно обсуждаются эксперименты по проверке закона всемирного тяготения, основанные на атомной интерферометрии, для измерения микроскопических пробных масс и очередного тестирования ньютоновского закона тяготения в микромире.

Предпринимались попытки применения других способов измерения G, но корреляция между измерениями практически не меняется. Этот феномен сегодня называют нарушением закона обратных квадратов либо «пятой силой». К пятой силе сейчас относят и некие частицы (поля) Хиггса – частицы Бога.

Кажется, божественную частицу удалось зафиксировать, а точнее сказать, вычислить, так сенсационно преподнесли Миру весть физики, участвовавшие в эксперименте на Большом адронном коллайдере (БАК) (LHC) [8].

Ну, а что дальше? Дорогостоящая игрушка (БАК) ни на йоту не продвинула понимание гравитационного взаимодействия и его составляющей – гравитационной постоянной.

На бозон Хиггса надейся, но сам не плошай!

Так что же это за таинственная постоянная, которая гуляет сама по себе, а без нее никуда?

Читаем продолжение статьи

Назад  Вперед

Источник: https://gennady-ershov.ru/g/gravitacionnaya-postoyannaya.html

Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину. Гравитационная постоянная

Гравитационная постоянная в системе си. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер.

Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено.

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли.

Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

Ссылки

  • Гравитационная постоянная – статья из Большой советской энциклопедии

Wikimedia Foundation. 2010.

Смотреть что такое “Гравитационная постоянная” в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ – (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия- (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь- (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарьФундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедиягравитационная постоянная – — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчикагравитационная постоянная – gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas- (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарьТяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарьКоэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия- (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без “темной энергии” (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

Все попытки экспериментаторов по уменьшению погрешности измерений гравитационной постоянной Земли до сего времени сводились к нулю.

Как было отмечено ранее, со времен Кавендиша точность измерения этой постоянной практически не увеличилась. За два с лишним столетия точность измерения не сдвинулась с места.

Такую ситуацию можно назвать по аналогии с «ультрафиолетовой катастрофой» как «катастрофа гравитационной постоянной». Из ультрафиолетовой катастрофы выбрались с помощью квантов, а как выйти из катастрофы с гравитационной постоянной?

Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:

Где, g – ускорение свободного падения (g=9,78 м/с 2 – на экваторе; g=9,832 м/с 2 – на полюсах).

R– радиус Земли, м,

M – масса Земли, кг.

Стандартное значение ускорения свободного падения, принятое при построении систем единиц, равно: g=9,80665 . Отсюда усредненное значение G будет равно:

В соответствии с полученным G, уточним температуру из пропорции:

6,68·10 -11 ~х=1~4,392365689353438·10 12

Данная температура соответствует по шкале Цельсия 20,4 o .

Такой компромисс, я думаю, вполне мог бы удовлетворить две стороны: экспериментальную физику и комитет (КОДАТА), чтобы периодически не пересматривать и не изменять значение гравитационной постоянной для Земли.

Можно «законодательно» утвердить нынешнее значение гравитационной постоянной для Земли G=6,67408·10 -11 Нм 2 /кг 2 , но скорректировать стандартное значение g=9,80665, несколько уменьшив его значение.

Кроме того, если использовать среднюю температуру Земли, равную 14 o С, то гравитационная постоянная будет равна G=6,53748·10 -11 .

Итак, у нас имеются три значения, претендующих на пьедестал гравитационной постоянной G для планеты Земля: 1) 6,67408·10 -11 м³/(кг·с²); 2) 6,68·10 -11 м³/(кг·с²); 3) 6,53748·10 -11 м³/(кг·с²).

Комитету КОДАТА остается вынести окончательный вердикт, какую из них утвердить как гравитационную постоянную Земли.

Мне могут возразить, если гравитационная постоянная зависит от температуры взаимодействующих тел, то силы притяжения днем и ночью, зимой и летом должны отличаться. Да, именно так и должно быть, с малыми телами.

Но Земля огромный, быстро вращающийся шар, имеет громадный запас энергии. Отсюда, интегральное количество крафонов зимой и летом, днем и ночью, вылетающих из Земли, одинаково.

Поэтому, ускорение свободного падения на одной широте остается всегда постоянным.

Если переместиться на Луну, где разность температур дневного и ночного полушарий сильно разнятся, то гравиметры должны зафиксировать разницу силы притяжения.

11 комментариев

    Только один вопрос к Вам:

    Или у Вас в постранстве энергия не в сфере распространяется?

И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.

Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»

Только один вопрос к Вам:Если Вы уже начали говорить об энергии, то почему напрочь забыли о 4Пи перед R2?!Или у Вас в постранстве энергия не в сфере распространяется?И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»________________________________________________________Вместо одного заявленного вопроса оказалось три, но суть не в этом.1. Касаемо 4π. В формулах (9) и (10) R2 – это расстояние от тела (предмета) до центра Земли. Откуда здесь должна появиться 4π – не понятно.2. Что касается максимальной температура вещества в природе. Вы, очевидно, поленились открыть ссылку в конце статьи: «Гравитационная постоянная величина – переменная».3. Теперь относительно «осмысленного описания процесса гравитационного взаимодействия тел». Все осмыслено и описано. Относительно, в какую сторону летят эти самые крафоны, читаем статьи: « ». Солнечные фотоны стартуют с поверхности Светила без отдачи, с приобретением импульсов придачи. Фотон, в противовес материальному миру, не имеет инерции – его импульс возникает в момент отрыва от источника без отдачи!Явление отдачи наблюдается только в телах, когда под действием внутренних сил оно распадается на части, разлетающееся в противоположные стороны. Фотон не распадается на части, он не расстается со своим приобретенным импульсом до своего поглощения, поэтому для него выражение (3) будет справедливо.« » , и ч.2 .Цитата из 2-й части: «Крафоны из элементарного шарика вылетают спонтанно, по разным направлениям по нормали его поверхности. Притом, направлены они, в основном, в атмосферу, т.е. в более разреженный электромагнитный эфир (ЭМЭ) по сравнению с ЭМЭ вод Мирового океана. В принципе та же картина наблюдается и на материках».

Уважаемые читатели, на тему: как возникает гравитация, и кто является ее переносчиком, читайте всю главу под названием: «Гравитация». Конечно, можно и выборочно, для этого кликайте по кнопке «Карта сайта» верхнего меню, расположенного над шапкой сайта.

Добавление к предыдущему комментарию.

12окт.2016г. На страницах электронного научно-практического журнала «Современные научные исследования и инновации» опубликована моя статья под названием: «Фотонно-квантовая гравитация». В статье изложена суть гравитации. Прочесть по ссылке:

Источник: https://sunbox.ru/chto-takoe-gravitacionnaya-postoyannaya-kak-ee-rasschityvayut-i-gde-primenyayut.html

Гравитационная постоянная

Гравитационная постоянная в системе си. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Значение гравитационной постоянной

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством гравитации, притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

Гравитационное взаимодействие двух тел

Здесь:

  • m1 и m2 — тела, взаимодействующие посредством гравитации
  • F1 и F2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684—1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела.

Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м3с−2.

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы.

Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику.

Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити.

Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости.

В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров.

Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Установка Генри Кавендиша

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента.

В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли.

Он достаточно точно вычислил значение плотности Земли – 5,47 г/см3 (сегодня более точные расчеты дают 5,52 г/см3).

Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10−11 м³/(кг·с²), G = 6,71·10−11м³/(кг·с²) или G = (6,6 ± 0,04)·10−11м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы.

Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту.

Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10-17.

Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10-11 – 10-12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида.

В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы.

Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10−11 м3·с−2·кг−1.

Источник: https://SpaceGid.com/gravitatsionnaya-postoyannaya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.